Chapter 14 Multivariable Functions

14. 1 Functions of Two or More Variables

f:R—>R

Recall functions of ONE variable:

fiR°SR

Functions of Two Variables:

Definition A function f of two variables is a rule that assigns to each ordered
pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).
The set D is the domain of f and its range is the set of values that f takes on,

that is, { f(x,y) | (x,y) € D}.

Example: f(xy)= In(x2 -y)
Compute functional values

What is the domain?

What would a graph look like? (in general, we will look at more specific methods later)

(X,y)
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Other orientations for functions
z=f(x,y) y=f(x,z) x=f(y,z)

_—-m\_
NS

‘-wii‘

NN
SRR
RN

AV Vd Ve
z

\OANANNNNNNT

N

\7\

\

VAVAVA!
\VAVAVAVAVAVAVAVAVAVAVA)

VAVAVAVAVAVAVA)

\VAVA

AVAVAVAY

VAVAVAVAVAYA )

A\VAVAVAVAVAVAVAVA
AVAVAVAVAVAY.AVAVAVAVAVAVAVA VA VoA

VAY
E AT e

\VAVAVAVAVAVAVAVAVAVAVA)

A

AVAVAVA

=

Graphing functions of two variables:

Sketch the graph of f(xy)= %x2+ ¥
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Note: Level curves can provide very useful physical information about the function even if the goal is not a graph.

45 N

e

flx, y) =20

FIGURE 11 FIGURE 12

© 2016 Cengage Leaming®

Functions of 3 variables
Definition similar, but domain is a set in

Example: w= f(x,y,z):\/1 00- X2 - P - 2

Find: f(Q00)= f(1,20)= f(1,23)=

Domain:
Graph: How would be “graph” £(000)=1C

Level surfaces:
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B e s R e T e

remains fixed.

fyz2)=x>+y*+ 2

SOLUTION The level surfaces are x> + y* + z* = k, where k = 0. These form a family
of concentric spheres with radius \/F . (See Figure 21.) Thus, as (x, y, z) varies over any
sphere with center O, the value of f(x, y, z) remains fixed. n

Functions of any number of variables can be considered. A function of n vari-
ables is a rule that assigns a number z = f(x,, x, ..., x,) to an n-tuple (x, x2, ..., x,)
of real numbers. We denote by R”" the set of all such n-tuples. For example, if a company
uses n different ingredients in making a food product, ¢; is the cost per unit of the ith
FIGURE 21 ingredient, and x; units of the ith ingredient are used, then the total cost C of the ingredi-

ante ic a funntinn af tha » variahlac v v e
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14.2 Limits - We cover this lightly

Recall limit for f(x) (1.7)

Extends in a logical way to f(x,y)

E] Precise Definition of a Limit Let f be a function defined on some open
interval that contains the number a, except possibly at a itself. Then we say that
the limit of f(x) as x approaches a is L, and we write

lim f(x) = L

if for every number & > 0 there is a number 8 > 0 such that

if 0<|x—a|<8 then [f(x)—-L|<e

[1] Definition Let f be a function of two variables whose domain D includes
points arbitrarily close to (a, b). Then we say that the limit of f(x, y) as (x, y)
approaches (a, b) is L and we write

lim f(x,y) =L

(x, y)—(a, b)
if for every number £ > 0 there is a corresponding number 8 > 0 such that

if (xy)€ED and 0<./(x—a)+(y—b)? <8 then |f(x,y) —L|<e

a-8 a+é

when x is in here
(x #a)

FIGURE 2
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How do we compute limits? (see graphs Math 5C page “Limits” https://www.geogebra.org/classic/ntcdb2mt)
Most of the functions we deal with are continuous on their domain, so to evaluate a limit, we just evaluate the function

(4] Definition A function f of two variables is called continuous at (a, b) if

2
. r 2 = ) X »
<x,y|)|—m>(1,1)[10 I ] I lim f(x,y) = f(a, b)

(x,v)—>(a, b)

We say f is continuous on D if f is continuous at every point (a, b) in D.

| But if f is not continuous at (a,b) but is instead indeterminate, we do one of three things.

1) Algebraic manipulation
4 A
. X' -y - 2
lim - lim (X% +y2)In(x%+y?)
(xy)>(Q0) X — y# (xy)-(00) v v




Chapter 14 Multivariable Functions

IS -

2) Prove the limit does not exist by considering different paths. ( Recall J(II)nO x

2y ;

. lim
Example: (M0 x2+ 2
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2) Consider different paths (cont’d)
X/

lim
(xy)~(Q0) X% + y4

Example:

What is the moral of the story on this example?
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3) Prove using the delta epsilon definition of limit or squeeze theorem. (You won’t be tested on these.)

E 1 lim ZXyZ
XAMPIE: (1 1)>(00) X2 + )2
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Intro to 14.6 and 14.3: Development of the derivative of f(x,y)

Derivative of f(x,y)

Derivative of f(x)

X ——
Y m———

Move a distance h from a given point (Xo, yo)

Move a distance h from a
in the direction of unit vector U=< ab>

given point Xo.

New point: New point:

Average Rate of Change at xo Average Rate of Change at (xo, yo) in the direction of unit vector U=<ab>

Aoutput rise_ Az _
Ainput  run

Aoutput rise _
Ainput  run

Instantaneous Rate of Change at xo Inst. Rate of Change at (o, yo)in the direction of unit vector U=<ab>

f'(x0)=

The general derivative: The general derivative:
f(x+ahy+ bh)—- f(xy)

F(x)= ﬁﬁow D, f(xy)= fl:Lno -
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Understanding the derivative D, f(xy)

Directional Derivatives

Author: Joseph Manthey

Topic: Derivative

Surface parameters g
a=255

b=025

Slope 0.55

https://www.geogebra.org/m/tZgrSxQ4#material/Trws2PBm

EXAMPLE 1 Use the weather map in Figure 1 to estimate the value of the directional
derivative of the temperature function at Reno in the southeasterly direction.
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14.3 Partial Derivatives

For now, though we should understand the meaning of the derivative D,f(xy) we are unable to compute it.

In this section, we consider to special cases of the derivative that we WILL be able to compute.

U=i=<10> U= j=<01>
Movement in the direction Movement in the direction
y= (constant) X= (constant)

=Dy f(xy)= = Dyf(xy)=

Notation:
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Another illustration of partial derivatives on the 5C page: https://www.geogebra.org/m/RtISr7 GW#material /gsypFXHC

Computing Partial Derivatives:

df Jf

To compute 8 X’ we treat as a constant. To compute 8 y, we treat as a constant
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Example:
2 of f
f(x,y)=x“Iny  Find: I x y
of
Z- (31
I X42) e

Differentiation extends to R3, with the additional partial derivative corresponding to the positive z direction, U=<0,0,1>

100
Example: Suppose 1'(x.y.z)= 22,2 is the Temperature in °F at point (x,y,z). Find and

B

interpret 7.(1,2,3).
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Approximating partial derivatives when discrete data or contour map given, no f(x,y)

Discrete Example: from pg 952 Given f(T.H)

Table 1 Heat index J as a function of temperature and humidity

Relative humidity (%)

H| s0 l ss [ 60 | 65 | 70 | 75 | 80 | & | o0
o0 | 96 | 9% [ 100 | 103 | 106 [ 109 | 112 | s | 119
02 | 100 | 103 [ 105 | 108 | M2 | 115 | 119 | 123 | 128
Actaal | | | |
lemperature o 104 | 107 | 111 114 | 118 | 122 127 132 137
(°F) | I
o6 | 109 l 113 l 16 | 121 | 125 | 130 l 135 | 141 | 146
Of | 114 | 118 [ 123 | 127 | 133 | 138 | 144 | 150 | 157
100 | 119 | 124 | 129 | 135 | 140 | 147 | 154 | 161 | 168
Find: f(70,96) fy(60,96)
Contour map example
e T
Y
: J |
) i
y 6
-
‘I
ri | — ¥
4 d Y S . -
j fl / " \ I
| - ' /

Find: f(2,0)

2f
5(2,0)
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Implicit Differentiation

For the surface Xx° +y2 + P = 1, find ‘;—)Z/ at the point [—g,%,gj
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Higher Order Partial Derivatives

F(xy)= xy*

Clairaut’s Theorem Suppose f is defined on a disk D that contains the point
(a, b). If the functions f, and f;, are both continuous on D, then

fola, b) = f..(a, b)
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14.5 - Chain Rules

Notation: If fis a function of ONE variable only, we use d. So if y=f(x), we say %

If fis a function of MORE than one variable, we use 0 So if z=f(x,y), we say j—)z(

Two versions of Chain Rule

1) fis a function of more than one variable where each of those variables is a function of one variable only, so fis ultimately
dependant on ONE variable.

Example: Z= xzy, with {X:?
y:

The Chain Rule (Case 1) Suppose that z = f(x, y) is a differentiable func-
tion of x and y, where x = g(#) and y = h(r) are both differentiable functions of 7.
Then z is a differentiable function of 7 and

d_ofdx o dy
dt dx dt dy dt
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2) fis a function of more than one variable where each of those variables is also a function of more than one variable, so fis
ultimately dependant on MORE than one variable.

X= cost
Example: W= XY. where y=sint
z=t

The Chain Rule (Case 2) Suppose that z = f(x, y) is a differentiable func-
tion of x and y, where x = ¢(s, 1) and y = h(s, ) are differentiable functions of s
and 7. Then

dz  dz ox 0z dy dz  dz ox dz dy

as ox ds dy ds ot dx ot dy ot

Example: Suppose F=f(x,y,zt) where x=x(u,v,w), y=y(u,v,w), z=z(u,v,w), and t=t(u,v,w),

Find: (show tree diagram)
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Using the chain rule to generate a formula as an alternate to implicit differentiation.

_ o R o Given x> +y%+z>=1, find E[E,l)
Recall example from 14.3 that we did using implicit differentiation: Iy 33
Assuming z can be expressed as a function of f(x,y) then we should be able to find 3_; but rater than solve for z (explicit) or

take the partial with respect to y of both sides (implicit) we will introduce a new function,

F(xy,2)= X2 +y2 +2 and represent the given surface X2 +y2 +Z=1asa particular level surface of F, F(X,);2)=1 (thisisa
common technique as we go on)

Now F is a function of x, y, and z......... where z is a function of xand y
(That is F(x,y,z) where z=f(x,y)) which means that in the words used earlier, F is ultimately a function of x and y.

Then by the chain rule:

OF _9Fdx oFdy 9Fdz . OF _0Fdx 0Fdy 0Fdz
X 8xdx o'?ydx dzdx an dy axdy 8ydy dzady

Applying this to a surface, represented by the equation F(X,y;2)=k we get

So
dz 0z
X and ay

Thus for our example:

See also example 8 page 982 for R2 version
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14.6 The Derivative

From our earlier introduction to derivative,

we defined

D, f(xy)= ,I,iLno f(x+ ah, y+hbh)— f(xy)

but we could not yet compute it. The chain rule
will enable us to compute it.

X= Xg+ah

z= f(x,y) and we found {_y: Yot bh

So z is ultimately a function of h only. Then

dz_
dh

Introducing gradient notation, define Vf(xy)= < £ (63, £(% y)> then

D, f(xy)=

Example: Find the (directional) derivative of f(xy)= xy2+ In x, at point (1,2) in the direction of v=(34)
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’ Significance of the Gradient

DZI f(XO!yO): ﬁf(XO’yO)' DZH%I‘:(X(),Y(»H”W co®

Maximum value of the directional derivative at (xo,y0) occurs in the direction of
and the value of the derivative in that direction is

Minimum value of the directional derivative at (xo,yo0) occurs in the direction of
and the value of the derivative in that direction is

Traveling in the direction which is orthogonal to the gradient

[llustration on 5C page: https://www.geogebra.org/m/tZgrSxQ4#material VBNTj7Y2




Chapter 14 Multivariable Functions

Demonstrates the maximum/mimimurn property
of the gradient. Move the red point to change the
direction. Observe which direction results in the
maximum and minimum values for the directional
derivative.

Py (1.25,1.5)

(02T e
u—( 096),071&:.8

Dy f(Pg) = ~3.12

curve of
steepest
ascent 100
FIGURE 12
| Extends to R3
For f(x2), V2= ( f(6%2), (12, 2(%%2))

DD f(XO1yO1ZO)= 6)‘:(XO’;VO!%). u= 6)‘:(XO’;VO’%X ||q| coy

As before, the maximum of the directional derivative at (Xo,yo,Zo) occurs in the direction of the gradient and the minimum
occurs in the direction opposite the gradient. Here, the gradient is orthogonal to the level surface of f(X,2).
EXAMPLE 7 Suppose that the lemperature at a point (x, v, =) in space is given by

L . . ‘ :

Tix,v,z) = 80/(1 + x* + 2y° + 3:°), where T is measured in degrees Celsius and MRS PoCaE L, 8, =5 S Aot vasr i

x, ¥, 2 in meters. In which direction does the temperature increase fastest at the point : T . T .

(1, 1, —2)? What is the maximum rate of increase? VI, 1, —2) = 50— — 2 + 6k) = (=i — 2j + 6k)

SOLUTION The gradient of T is By Theorem 15 the temperature increases fastest in the direction of the gradient vector
vpo O 9T, T VT(1, 1, =2) = §(~=i — 2j + 6k) or. equivalently, in the direction of —i — 2j + 6k

ax iy 1% or the unit vector (—i — 2j + 6k)/y'41. The maximum rate of increase is the length ol
the gradient vector:
o 160x 320y ) 480z

; - : =1 - : - - - - —k —
(1 +x% + 2y + 3°F A+r+27+3277 (1 +2 +27 +32) |WT(1, 1, =2)| = §| =i — 2j + 6k| = § /41

- 160 e o

T+ X%+ 2+ 32 X=X Therefore the maximum rate of increase of temperature is 3 /41 = 4°C/m. "
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14.6 cont’d : Tangent Planes

We are often interested in finding the plane tangent to a
surface at a given point.

As we learned earlier, any surface can be expressed as a level
surface of a function of three variables. F(x,y,z)=k. Given the
previous discussion, VF(xy,yg %) is orthogonal to the level surface
of F. That will be our normal vector to the plane.
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14.4 : Tangent Planes and Differentials

Tangent Planes
In 14.6 we learned how to find the equation for a plane tangent to a surface. If we express the surface as a level surface of a

function of 3 variables, F(x,y,z)=k, then the normal vector for the tangent plane at the point (xg,y0,2) iS h= VF (X0, Y0, 2)-

-

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid = = 2x* 4+ v at the
point (1. 1, 3).

In section 14.4, your book derives another formula that can be used in the special case that the surface can be expressed as a
function, z=f(x,y).

Note the similarity between the equa- [2] Suppose f has continuous partial derivatives. An equation of the tangent
tion of a tangent plane and the equation plane to the surface z = f(x, y) at the point P(xo, yo, zo) is

of a tangent line:

y = yo = f(xo)(x = xq) z — 2o = fulxo, yo)(x — x0) + fi(x0, yo)(y — yo)

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid z = 2x? + y® at the
point (1, 1, 3).

SOLUTION Let f(x,y) = 2x* + y% Then
filx,y) = 4x filx,y) =2y
f(1,1) =4 A(,1) =2
Then (2) gives the equation of the tangent plane at (1, 1, 3) as
z=3=4x—-1)+2y—-1)

or z=4x+2y—3 =
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[t is not necessary to remember this formula separately since our method from 14.6 is more general and works in more
situations. However, we will use this formula in a derivation which follows.
Differentials

Recall from 5A: If y=f(x), the the differential, dy= What is this giving us.

Y

y=flx)_ /
~/

0 \\. a a+Ax X
tangent line
y= fla)+ f'(a)(x — a)

In section2.9, we used this in two ways. (1) Use dy to approximate Ay, and (2) Approximate functional values f(x+Ax)

Similarly, for z=f(x,y) we would want dz to represent

Deriving the formula for the differential dz:

(@a+ Ax, b+ Ay, fla+ Ax, b+ Ay))
surface = = f(x, y) 4

(a, b, fla, b))__

}%
-// . '
A fla, b) ) >y
/’/ {a+Ax, b+ Ay, 0)
X .

i o oy —
\a, h. 0 .1_\' - d'\' \
tangent plane

z— fla, b)= fla, b)(x —a)+ f,a, b)(y— b)
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| We use differentials in two ways:

(1) Approximate AZ

EXAMPLE 4

(a) Ifz = f(x,y) = xt+ 3xy — )_3‘ find the differential dz.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the value:
of Az and dz.

SOLUTION
(a) Definition 10 gives

0z 0z
dz = ~—dx + —dy = (2x + 3y) dx + (3x — 2y) dy

ax Ay
(b) Putting x = 2, dx = Ax = 0.05, y = 3, and dy = Ay = —0.04, we get
dz = [2(2) + 3(3)]0.05 + [3(2) — 2(3)](—0.04) = 0.65
The increment of z is
z = £(2.05,2.96) — (2, 3)
= [(2.05)* + 3(2.05)(2.96) — (2.96)*] — [2* + 3(2)(3) — 3?]
= 0.6449

Notice that Az = dz but dz is easier to compute.

The need to approximate AZ comes up in physical applications like that of computing error, see example 5
(2) Approximating functional values f(a+Ax,b+Ay)

f(a+Ax,b+Ay)=

Example: Use differentials to approximate /9(1.9 5)2+ (8\1)2
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14.7 Extrema of f(x,y)

5A Review problem: Given f(x)= 3x* 1663 +1 8¥2, find:

Critical Numbers: (3.1)

@ Definition A critical number of a function f is a number ¢ in the domain of
f such that either f'(c) = 0 or f'(c) does not exist.

1) Local Extrema (3.3)

The First Derivative Test Suppose that ¢ is a critical number of a continuous

function f.

(a) If f' changes from positive to negative at ¢, then f has a local maximum at c.

(b) If f" changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f'is positive to the left and right of ¢, or negative to the left and right of ¢,
then f has no local maximum or minimum at c.

The Second Derivative Test Suppose f” is continuous near c.
(a) If f'(c) = 0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) = 0 and f"(c) < 0, then f has a local maximum at c.

2) Absolute Extrema

3) Absolute Extrema on [-1,4]
(3.1)

The Closed Interval Method To find the absolute maximum and minimum

values of a continuous function f on a closed interval [a, b]: (~1,37) (4.32)
1. Find the values of f at the critical numbers of f in (a, b). | 20 1
2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value;

the smallest of these values is the absolute minimum value.
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5A review contd: applied problem

X ﬁ
16

Maximize the area of a rectangle inscribed in

Desmos animation (link on 5C page) https://www.desmos.com/calculator/uphhr6aikh
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Now Consider Extrema for z=f(x,y)

A absolute
maximum

local
maximum

local

absolute O
minimum

minimum

Observations:

Critical Points:

Example: Find the critical points of f(xy)= %((x3+ y3-1 ZX;J
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14.7i Local Extrema

After computing critical points, what next?
“First Derivative Test"?
“Second Derivative Test"?

How do we even compute a second derivative?

Example: Compute D% f(4,4) for f(xy)= %&xﬁy”— 1 ZX)a in the direction of u= <%,g>

VF(xy)= <%O(3x2— 12) ,%O(syz— 1 2x)>, 50

- vl 3 (22 A a2 o= 2 2 36 12 > 48
Dy )= VI )e U= g3~ 1) +55d3 1202 550"~ 55+ 500~ s00°

Now we take the derivative of this function in the direction of u= <%,g>

3 4
Dy(Dy f(xy)) = DD(EOGXZ— 1 2y)+%0(3y2— 1 2x):)
D2 f(xy)= f1c>654"_ 288 96))

D% f(4,4)=
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How do we show D?;f(4,4)>0 for every direction? (See proof pg 1007)....
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| Test For Local Extrema

Second Derivatives Test Suppose the second partial derivatives of f
are continuous on a disk with center (a, b), and suppose that f.(a, b) = 0 and
fi(a, b) = 0 [that is, (a, b) is a critical point of f]. Let

D = D(a, b) = f..(a, b) f,,(a, b) — [ f.,(a, b)]
(a) If D > 0 and f..(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and f..(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is not a local maximum or minimum.

So for our example, f(xy)= %((x3+ y3-1 Zna with critical points (4,4) and (0,0)

1 3 -1 32
fe=15d3¥-12) fy_100(3y2 12)

At (0,0) D=

At (4,4) D=
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14.7ii Absolute Extrema

Find the maximum volume of a rectangular box that can be inscribed in the ellipsoid 9x°+ 36/ +42 = 3¢

How do we know this critical point actually yields an ABSOLUTE MAX? MUST VALIDATE THIS IN SOME WAY.
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14.7iii Absolute Extrema for f(x,y) Continuous on Closed Domain

Example. Find the absolute extrema of f(Xy)= X2+ 2)/2 on the closed domain (or “subject to the constraint”) X2 +y~P <

https://www.geogebra.org/m/RtISr7GW#material/i77QsiGf

For another example, see 5C page http://pccmathuyekawa.com/classes-taught/math_Sc/file _cabinet/handouts/14.7 HW jpg
Or video. https://youtu.be/LnX-UZ30ULA
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14.7 Summary

14.7i: Local Extrema

. . . . fr(xy)=0
¢ Find the critical points by solving the system x(x)
f(xy)=0
. : . fix 1
e For each critical point apply the second derivative test. Compute D= fXX fyx
Xy Yy

o IfD>0, there is alocal extremum, to determine if it is a max or min find £, (or f,,) at the critical point
o If £,>0, think concave up, so there is a local min.
e If £,<0, think concave down, so there is a local max

o IfD<0, there is not a local extremum at that point. This yields a saddle point.

14.7ii: Absolute Extrema subject to a constraint equation

e Incorporate the constraint into the function you wish to optimize to create a function of two variables f(x,y).
fi(xy)=0
f(xy)=0
e Validate whether this critical point actually yields an absolute extremum. Often we do this using physical vadiation.
e Make sure to answer the question asked. Is the max value asked? The input? Both?

¢ Find the critical points by solving the system {

14.7iii: Absolute Extrema: Special case f(x,y) continuous on closed domain.

e Compare values of f(x,y) both at critical points and on the boundary of the domain.
fi(xy)=0
fxy)=0
e Consider the boundary D (if D is piecewise smooth, repeat this step for each piece of the boundary).

o Incorporated the boundary curve(s) into f(x,y) to create a function of one variable, say g(x). (or it could be a
function of y)

o Find the domain interval for the input interval. a<x<b (or a<y<b)

o Treatas a 5A closed interval method problem (3.1) and find the abs . max for that f(x) on [a,b]. Compare the
values you get here to the value of f at critical numbers

¢ Find the critical points by solving the system { the find f at those critical points which are in the domain.

14.8 Lagrange Multipliers- A method for Optimizing a Function subject to a constraint equation
(Omit two constraint problem)
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Example motivating the method of Lagrange Multipliers: Maximize the area of a rectangle inscribed in

XY

16 9

Desmos animation (link on 5C page) https://www.desmos.com/calculator/uphhr6aikh
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Method of Lagrange Multipliers:

IS

To optimize f subject to a constraint equation g=k, —
/ 2 @ N
V(%)= AVgxY) VE(x%2)= AVgx%2) \ AT24~— A436
{g(x,y):k {g(x,y,z):k / \ N \A=h:
5 — 0 2 6 8
:\
.\ /

E -
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Method of Lagrange Multipliers To find the maximum and minimum values
of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme
values exist and Vg # 0 on the surface g(x, y, z) = k]:

(a) Find all values of x, y, z, and A such that
Vi(x,y,2) = A Vg(x,y,2)
and glx,v,z) =k

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of
these values is the maximum value of f; the smallest is the minimum value
of f.

XZ

Redo First Example: Maximize A(XY)=4Xy subject to constraint equation T6 9" 1
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Chapter 14 Multivariable Functions

Redo Example from last section:

Find the maximum volume of a rectangular box that can be inscribed in the
ellipsoid 9x2 +36y” +4z2 = 36
As discussed previously, we wish to maximize V(x,y,2)= 8xy: subject to the constraint
9x2+3@/2+422: 36 xy,z>0
So our "f(x%2)"is V(XY,2)=8XYzand our



Chapter 14 Multivariable Functions
Lagrange Multiplier Illustration https://www.geogebra.org/m/RtISr7GW#material/i7ZQsiGf
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