Chapter 14 Multivariable Functions

14. 1 Functions of Two or More Variables

Recall functions of ONE variable:
 $$
f: R \rightarrow R
$$

Functions of Two Variables:
$f: R^{2} \rightarrow R$

Definition A function \boldsymbol{f} of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by $f(x, y)$.
The set D is the domain of f and its range is the set of values that f takes on, that is, $\{f(x, y) \mid(x, y) \in D\}$.

Example: $f(x, y)=\ln \left(x^{2}-y\right)$
Compute functional values
What is the domain?
What would a graph look like? (in general, we will look at more specific methods later)

Chapter 14 Multivariable Functions

Other orientations for functions $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$

$x=f(y, z)$

Graphing functions of two variables:
Sketch the graph of $f(x, y)=\frac{1}{4} x^{2}+y^{2}$

Chapter 14 Multivariable Functions

Note: Level curves can provide very useful physical information about the function even if the goal is not a graph.

FIGURE 11

FIGURE 12

Functions of 3 variables
Definition similar, but domain is a set in \qquad -

Example: $w=f(x, y, z)=\sqrt{100 x^{2}-y^{2}-z^{2}}$
Find: $f(0,0,0)=$ \qquad $f(1,20)=$ \qquad $f(1,2,3)=$ \qquad

Domain:
Graph: How would be "graph" $f(0,0,0)=1 \mathrm{C}$
Level surfaces:

Chapter 14 Multivariable Functions

remains fixed.

FIGURE 21
别 ables is a rule that assigns a number $z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to an n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers. We denote by \mathbb{R}^{n} the set of all such n-tuples. For example, if a company
uses n different ingredients in making a food product, c_{i} is the cost per unit of the i th uses n different ingredients in making a food product, c_{i} is the cost per unit of the i th
ingredient, and x_{i} units of the i th ingredient are used, then the total cost C of the ingrediante ic a fimation of the n varinhlac $v \cdots \cdots$

Chapter 14 Multivariable Functions

14.2 Limits - We cover this lightly

Recall limit for $\mathrm{f}(\mathrm{x})$ (1.7)

2 Precise Definition of a Limit Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

Extends in a logical way to $f(x, y)$

1 Definition Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the limit of $f(x, y)$ as (x, y) approaches ($\boldsymbol{a}, \boldsymbol{b}$) is L and we write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that if $\quad(x, y) \in D \quad$ and $\quad 0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta \quad$ then $\quad|f(x, y)-L|<\varepsilon$

when x is in here
$(x \neq a)$

FIGURE 2

Chapter 14 Multivariable Functions

How do we compute limits? (see graphs Math 5C page "Limits" https://www.geogebra.org/classic/ntcdb2mt)
Most of the functions we deal with are continuous on their domain, so to evaluate a limit, we just evaluate the function
$\lim _{(x, y) \rightarrow(1,1)}\left(\frac{x^{2}}{10}+y^{2}\right)=$ \qquad

4 Definition A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

We say f is continuous on D if f is continuous at every point (a, b) in D.

1) Algebraic manipulation

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}-y^{2}}=
$$

$$
\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)
$$

Chapter 14 Multivariable Functions
2) Prove the limit does not exist by considering different paths. (Recall $\lim _{x \rightarrow 0} \frac{|x|}{x}$)

Example: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$

Chapter 14 Multivariable Functions

2) Consider different paths (cont'd)

$$
\text { Example: } \lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}
$$

What is the moral of the story on this example? \qquad

3) Prove using the delta epsilon definition of limit or squeeze theorem. (You won't be tested on these.)

Example: $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+y^{2}}$

Chapter 14 Multivariable Functions

Intro to 14.6 and 14.3: Development of the derivative of $f(x, y)$

Derivative of $\mathrm{f}(\mathrm{x})$

Move a distance h from a given point x_{0}.

New point:

Derivative of $f(x, y)$

Move a distance h from a given point ($\mathrm{x}_{0}, \mathrm{y}_{0}$) in the direction of unit vector $\vec{u}=\langle a, b>$

New point:

Average Rate of Change at ($\mathrm{x}_{0}, \mathrm{y}_{0}$) in the direction of unit vector $\vec{u}=<a, b>$ $\frac{\text { soutput }}{\Delta \text { input }}=\frac{\text { rise }}{\text { run }}=\frac{\Delta z}{=}$

Inst. Rate of Change at $\left(x_{0}, y_{0}\right)$ in the direction of unit vector $\vec{u}=\langle a, b>$

The general derivative:
$D_{\vec{u}} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+a h, y+b h)-f(x, y)}{h}$

Chapter 14 Multivariable Functions

Understanding the derivative $D_{\bar{u}} f(x, y)$
Directional Derivatives
Author: Joseph Manthey
Topic: Derivative

https://www.geogebra.org/m/tZgrSxQ4\#material/Trws2PBm

EXAMPLE 1 Use the weather map in Figure 1 to estimate the value of the directional derivative of the temperature function at Reno in the southeasterly direction.

Chapter 14 Multivariable Functions

14.3 Partial Derivatives

For now, though we should understand the meaning of the derivative $D_{\bar{u}} f(x, y)$ we are unable to compute it.
In this section, we consider to special cases of the derivative that we WILL be able to compute.

$$
\vec{u}=\vec{i}=\langle 1,0\rangle
$$

$\vec{u}=\vec{j}=\langle 0,1\rangle$
Movement in the \qquad direction

Movement in the \qquad direction
$y=$ \qquad (constant)
$\mathrm{x}=$ \qquad (constant)
\qquad $=D_{\bar{u}} f(x, y)=$
\qquad $=D_{\bar{u}} f(x, y)=$

Notation:

Chapter 14 Multivariable Functions

Another illustration of partial derivatives on the 5C page: https://www.geogebra.org/m/RtISr7GW\#material/gsypFXHC

Computing Partial Derivatives:
To compute $\frac{\partial f}{\partial x}$, we treat \qquad as a constant. To compute $\frac{\partial f}{\partial y}$, we treat \qquad as a constant

Example:
$f(x, y)=x^{2} \ln y \quad$ Find $: \frac{\partial f}{\partial x}$

$\left.\frac{\partial f}{\partial x}\right|_{(4,2)}$
$f_{y}(3,1)$

Differentiation extends to R^{3}, with the additional partial derivative corresponding to the positive z direction, $\vec{u}=<0,0,1>$

Example: Suppose $T(x, y, z)=\frac{100}{x^{2}+y^{2}+z^{2}}$ is the Temperature in ${ }^{\circ} \mathrm{F}$ at point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$. Find and interpret $T_{z}(1,2,3)$.

Discrete Example: from pg 952 Given $f(T, H)$

Actual temperature (${ }^{(} \mathrm{F}$)	Relative humidity (\%)									
	$T H$	50	55	60	65	70	75	80	85	90
	90	96	98	100	103	106	109	112	115	119
	92	100	103	105	108	112	115	119	123	128
	94	104	107	111	114	118	122	127	132	137
	96	109	113	116	121	125	130	135	141	146
	98	114	118	123	127	133	138	144	150	157
	100	119	124	129	135	141	147	154	161	168

Find: $f(70,96)$

$$
f_{H}(60,96)
$$

Contour map example

Find: $f(2,0)$
$f_{x}(2,0)$
$\frac{\partial f}{\partial y}(2,0)$

For the surface $x^{2}+y^{2}+z^{2}=1$, find $\frac{\partial z}{\partial y}$ at the point $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$

$$
f(x, y)=x^{3} y^{4}
$$

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Chapter 14 Multivariable Functions

14.5 - Chain Rules

Notation: If f is a function of ONE variable only, we use d . So if $\mathrm{y}=\mathrm{f}(\mathrm{x})$, we say $\frac{d y}{d x}$
If f is a function of MORE than one variable, we use ∂ So if $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, we say $\frac{\partial z}{\partial x}$

Two versions of Chain Rule

1) f is a function of more than one variable where each of those variables is a function of one variable only, so f is ultimately dependant on ONE variable.

$$
\text { Example: } z=x^{2} y, \quad \text { with }\left\{\begin{array}{l}
x=t^{2} \\
y=t^{3}
\end{array}\right.
$$The Chain Rule (Case 1) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(t)$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Chapter 14 Multivariable Functions

2) f is a function of more than one variable where each of those variables is also a function of more than one variable, so f is ultimately dependant on MORE than one variable.
Example: $\quad W=x y z \quad$ where $\quad\left\{\begin{array}{l}x=\cos t \\ y=\sin t \\ z=t\end{array}\right.$

3 The Chain Rule (Case 2) Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t. Then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Example: Suppose $\mathrm{F}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ where $\mathrm{x}=\mathrm{x}(\mathrm{u}, \mathrm{v}, \mathrm{w}), \mathrm{y}=\mathrm{y}(\mathrm{u}, \mathrm{v}, \mathrm{w}), \mathrm{z}=\mathrm{z}(\mathrm{u}, \mathrm{v}, \mathrm{w})$, and $\mathrm{t}=\mathrm{t}(\mathrm{u}, \mathrm{v}, \mathrm{w})$,
Find:
(show tree diagram)

Using the chain rule to generate a formula as an alternate to implicit differentiation.

Recall example from 14.3 that we did using implicit differentiation: Given $x^{2}+y^{2}+z^{2}=1$, find $\frac{\partial z}{\partial y}\left(\frac{2}{3}, \frac{1}{3}\right)$
Assuming z can be expressed as a function of $\mathrm{f}(\mathrm{x}, \mathrm{y})$ then we should be able to find $\frac{\partial z}{\partial y}$, but rater than solve for z (explicit) or take the partial with respect to y of both sides (implicit) we will introduce a new function,
$F(x, y, z)=x^{2}+y^{2}+z^{2}$ and represent the given surface $x^{2}+y^{2}+z^{2}=1$ as a particular level surface of $\mathrm{F}, F(x, y, z)=1$ (this is a common technique as we go on)

Now F is a function of x, y, and z where z is a function of x and y
(That is $F(x, y, z)$ where $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$) which means that in the words used earlier, F is ultimately a function of x and y .
Then by the chain rule:
$\frac{\partial F}{\partial x}=\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} \quad$ and $\quad \frac{\partial F}{\partial y}=\frac{\partial F}{\partial x} \frac{d x}{d y}+\frac{\partial F}{\partial y} \frac{d y}{d y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}$

Applying this to a surface, represented by the equation $F(x, y, z)=k$ we get

So
$\frac{\partial z}{\partial x}=$
and $\frac{\partial z}{\partial y}=$
Thus for our example:

See also example 8 page 982 for R 2 version

14.6 The Derivative

From our earlier introduction to derivative, we defined

$$
D_{\bar{u}} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+a h, y+b h)-f(x, y)}{h}
$$

but we could not yet compute it. The chain rule will enable us to compute it.

$$
z=f(x, y) \text { and we found }\left\{\begin{array}{l}
x=x_{0}+a h \\
y=y_{0}+b h
\end{array}\right.
$$

So z is ultimately a function of h only. Then

$$
\frac{d z}{d h}=
$$

Introducing gradient notation, define $\vec{\nabla} f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$ then

$$
D_{\bar{u}} f(x, y)=
$$

Example: Find the (directional) derivative of $f(x, y)=x y^{2}+\ln x$, at point $(1,2)$ in the direction of $\vec{v}=\langle 3,4\rangle$

$$
D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\vec{\nabla} f\left(x_{0}, y_{0}\right) \bullet \vec{u}=\left\|\vec{\nabla} f\left(x_{0}, y_{0}\right)\right\|\|\vec{u}\| \cos \theta
$$

Maximum value of the directional derivative at ($\mathrm{x}_{0}, \mathrm{y}_{0}$) occurs in the direction of \qquad and the value of the derivative in that direction is \qquad

Minimum value of the directional derivative at ($\mathrm{x}_{0}, \mathrm{y}_{0}$) occurs in the direction of \qquad and the value of the derivative in that direction is \qquad
Traveling in the direction which is orthogonal to the gradient \qquad

Illustration on 5C page: https://www.geogebra.org/m/tZgrSxQ4\#material/vBNTj7Y2

FIGURE 12

Extends to R3

For $f(x, y, z), \quad \vec{\nabla} f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle$

$$
D_{\vec{u}} f\left(x_{0}, y_{0}, z_{0}\right)=\vec{\nabla} f\left(x_{0}, y_{0}, z_{0}\right) \cdot \vec{u}=\left\|\vec{\nabla} f\left(x_{0}, y_{0}, z_{0}\right)\right\|\|\vec{u}\| \cos \theta
$$

As before, the maximum of the directional derivative at ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) occurs in the direction of the gradient and the minimum occurs in the direction opposite the gradient. Here, the gradient is orthogonal to the level surface of $f(x, y, z)$.

EXAMPLE 7 Suppose that the temperature at a point (x, y, z) in space is given by
$T(x, y, z)=80 /\left(1+x^{2}+2 y^{2}+3 z^{2}\right)$, where T is measured in degrees Celsius and
x, y, z in meters. In which direction does the temperature increase fastest at the point
$(1,1,-2)$? What is the maximum rate of increase?
SOLUTION The gradient of T is

$$
\begin{aligned}
\nabla T & =\frac{\partial T}{\partial x} \mathbf{i}+\frac{\partial T}{\partial y} \mathbf{j}+\frac{\partial T}{\partial z} \mathbf{k} \\
& =-\frac{160 x}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}} \mathbf{i}-\frac{320 y}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}} \mathbf{j}-\frac{480 z}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}} \mathbf{k} \\
& =\frac{160}{\left(1+x^{2}+2 y^{2}+3 z^{2}\right)^{2}}(-x \mathbf{i}-2 y \mathbf{j}-3 z \mathbf{k})
\end{aligned}
$$

At the point $(1,1,-2)$ the gradient vector is

$$
\nabla T(1,1,-2)=\frac{160}{256}(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k})=\frac{5}{8}(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k})
$$

By Theorem 15 the temperature increases fastest in the direction of the gradient vector $\nabla T(1,1,-2)=\frac{5}{8}(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k})$ or, equivalently, in the direction of $-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$ or the unit vector $(-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}) / \sqrt{41}$. The maximum rate of increase is the length of the gradient vector:

$$
|\nabla T(1,1,-2)|=\frac{5}{8}|-\mathbf{i}-2 \mathbf{j}+6 \mathbf{k}|=\frac{5}{8} \sqrt{41}
$$

Therefore the maximum rate of increase of temperature is $\frac{5}{8} \sqrt{41} \approx 4^{\circ} \mathrm{C} / \mathrm{m}$.

14.6 cont'd : Tangent Planes

We are often interested in finding the plane tangent to a surface at a given point.

As we learned earlier, any surface can be expressed as a level surface of a function of three variables. $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{k}$. Given the previous discussion, $\vec{\nabla} F\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to the level surface of F . That will be our normal vector to the plane.

Example: Find the equations of the tangent plane and the normal line to the surface $x=y^{2}+z^{2}+1$ at the point $(3,1,-1)$.

Chapter 14 Multivariable Functions

14.4: Tangent Planes and Differentials

Tangent Planes

In 14.6 we learned how to find the equation for a plane tangent to a surface. If we express the surface as a level surface of a function of 3 variables, $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{k}$, then the normal vector for the tangent plane at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is $\vec{n}=\vec{\nabla} F\left(x_{0}, y_{0}, z_{0}\right)$.

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the
point (1, 1, 3).

In section 14.4, your book derives another formula that can be used in the special case that the surface can be expressed as a
function, $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$.

Note the similarity between the equation of a tangent plane and the equation of a tangent line:
$y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

2 Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.
SOLUTION Let $f(x, y)=2 x^{2}+y^{2}$. Then

$$
\begin{array}{ll}
f_{x}(x, y)=4 x & f_{y}(x, y)=2 y \\
f_{x}(1,1)=4 & f_{y}(1,1)=2
\end{array}
$$

Then (2) gives the equation of the tangent plane at $(1,1,3)$ as

$$
\begin{aligned}
z-3 & =4(x-1)+2(y-1) \\
z & =4 x+2 y-3
\end{aligned}
$$

Chapter 14 Multivariable Functions

It is not necessary to remember this formula separately since our method from 14.6 is more general and works in more situations. However, we will use this formula in a derivation which follows.
Differentials
Recall from 5A: If $y=f(x)$, the the differential, $d y=$ \qquad What is this giving us.

In section2.9, we used this in two ways. (1) Use dy to approximate Δy, and (2) Approximate functional values $f(x+\Delta x)$

Similarly, for $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ we would want dz to represent \qquad
Deriving the formula for the differential dz:

Chapter 14 Multivariable Functions

We use differentials in two ways:

(1) Approximate Δz

EXAMPLE 4

(a) If $z=f(x, y)=x^{2}+3 x y-y^{2}$, find the differential $d z$.
(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96 , compare the value:
of Δz and $d z$.
SOLUTION
(a) Definition 10 gives

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=(2 x+3 y) d x+(3 x-2 y) d y
$$

(b) Putting $x=2, d x=\Delta x=0.05, y=3$, and $d y=\Delta y=-0.04$, we get

$$
d z=[2(2)+3(3)] 0.05+[3(2)-2(3)](-0.04)=0.65
$$

The increment of z is

$$
\begin{aligned}
\Delta z & =f(2.05,2.96)-f(2,3) \\
& =\left[(2.05)^{2}+3(2.05)(2.96)-(2.96)^{2}\right]-\left[2^{2}+3(2)(3)-3^{2}\right] \\
& =0.6449
\end{aligned}
$$

Notice that $\Delta z \approx d z$ but $d z$ is easier to compute.
The need to approximate ΔZ comes up in physical applications like that of computing error, see example 5
(2) Approximating functional values $f(a+\Delta x, b+\Delta y)$

$$
\text { Since } \Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)
$$

$$
f(a+\Delta x, b+\Delta y)=
$$

Example: Use differentials to approximate $\sqrt{9(1.95)^{2}+(8.1)^{2}}$

Chapter 14 Multivariable Functions

14.7 Extrema of $\mathrm{f}(\mathrm{x}, \mathrm{y})$

5A Review problem: Given $f(x)=3 x^{4}-16 x^{3}+18 x^{2}$, find:
Critical Numbers: (3.1)

```
6}\mathrm{ Definition A critical number of a function }f\mathrm{ is a number c in the domain of
f such that either f}\mp@subsup{f}{}{\prime}(c)=0\mathrm{ or }\mp@subsup{f}{}{\prime}(c)\mathrm{ does not exist.
```

1) Local Extrema (3.3)

The First Derivative Test Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} is positive to the left and right of c, or negative to the left and right of c,
then f has no local maximum or minimum at c.

The Second Derivative Test Suppose $f^{\prime \prime}$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c
2) Absolute Extrema

3) Absolute Extrema on [-1,4]

(3.1)

The Closed Interval Method To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

5A review contd: applied problem
Maximize the area of a rectangle inscribed in $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Observations:

Critical Points:

Example: Find the critical points of $f(x, y)=\frac{1}{100}\left(x^{3}+y^{3}-12 x y\right)$

14.7i Local Extrema

After computing critical points, what next?
"First Derivative Test"?
"Second Derivative Test"?
How do we even compute a second derivative?
Example: Compute $D^{2}{ }_{u} f(4,4)$ for $f(x, y)=\frac{1}{100}\left(x^{3}+y^{3}-12 x y\right)$ in the direction of $\vec{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$
$\vec{\nabla} f(x, y)=\left\langle\frac{1}{100}\left(3 x^{2}-12 y\right), \frac{1}{100}\left(3 y^{2}-12 x\right)\right\rangle$, so
$D_{\vec{u}} f(x, y)=\vec{\nabla} f(x, y) \cdot \vec{u}=\frac{3}{500}\left(3 x^{2}-12 y\right)+\frac{4}{500}\left(3 y^{2}-12 x\right)=\frac{9}{500} x^{2}-\frac{36}{500} y+\frac{12}{500} y^{2}-\frac{48}{500} x$
Now we take the derivative of this function in the direction of $\vec{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$
$D_{\bar{u}}\left(D_{\bar{u}} f(x, y)\right)=D_{\vec{u}}\left(\frac{3}{500}\left(3 x^{2}-12\right)+\frac{4}{500}\left(3 y^{2}-12 x\right)=\right)$
$D^{2}{ }_{u} f(x, y)=\frac{1}{250}(54 x-288+96 y)$
$D^{2}{ }_{u} f(4,4)=$

Chapter 14 Multivariable Functions

How do we show $D^{2}{ }_{u} f(4,4)>0$ for every direction? (See proof pg 1007)....

Chapter 14 Multivariable Functions

Test For Local Extrema

3 Second Derivatives Test Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ [that is, (a, b) is a critical point of f]. Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is not a local maximum or minimum.

So for our example, $f(x, y)=\frac{1}{100}\left(x^{3}+y^{3}-12 x y\right)$ with critical points $(4,4)$ and $(0,0)$

$$
f_{x}=\frac{1}{100}\left(3 x^{2}-12 y\right) \quad f_{y}=\frac{1}{100}\left(3 y^{2}-12 x\right)
$$

$D=\left|\begin{array}{ll}f_{x x} & f_{y x} \\ f_{x y} & f_{y y}\end{array}\right|=$

At $(0,0) \quad D=$

At $(4,4) D=$

14.7ii Absolute Extrema

Find the maximum volume of a rectangular box that can be inscribed in the ellipsoid $9 x^{2}+36 y^{2}+4 z^{2}=3 \epsilon$

Chapter 14 Multivariable Functions

14.7iii Absolute Extrema for $\mathrm{f}(\mathrm{x}, \mathrm{y})$ Continuous on Closed Domain

Example. Find the absolute extrema of $f(x, y)=x^{2}+2 y^{2}$ on the closed domain (or "subject to the constraint") $x^{2}+y^{2} \leq 1$

https://www.geogebra.org/m/RtISr7GW\#material/i7ZQsiGf

For another example, see 5C page http://pccmathuyekawa.com/classes-taught/math $5 \mathrm{c} /$ file cabinet/handouts/14.7 $\mathrm{HW} . j p g$ Or video. https://youtu.be/LnX-UZ30ULA

14.7 Summary

14.7i: Local Extrema

- Find the critical points by solving the system $\left\{\begin{array}{l}f_{x}(x, y)=0 \\ f_{y}(x, y)=0\end{array}\right.$
- For each critical point apply the second derivative test. Compute $\mathrm{D}=\left|\begin{array}{ll}f_{x x} & f_{y x} \\ f_{x y} & f_{y y}\end{array}\right|$
- If $\mathrm{D}>0$, there is a local extremum, to determine if it is a max or min find $f_{x x}\left(\right.$ or $\left.f_{y y}\right)$ at the critical point - If $f_{x x}>0$, think concave up, so there is a local min.
- If $f_{y y}<0$, think concave down, so there is a local max
- If $\mathrm{D}<0$, there is not a local extremum at that point. This yields a saddle point.

14.7ii: Absolute Extrema subject to a constraint equation

- Incorporate the constraint into the function you wish to optimize to create a function of two variables $\mathrm{f}(\mathrm{x}, \mathrm{y})$.
- Find the critical points by solving the system $\left\{\begin{array}{l}f_{x}(x, y)=0 \\ f_{y}(x, y)=0\end{array}\right.$
- Validate whether this critical point actually yields an absolute extremum. Often we do this using physical vadiation.
- Make sure to answer the question asked. Is the max value asked? The input? Both?
14.7iii: Absolute Extrema: Special case $f(x, y)$ continuous on closed domain.
- Compare values of $f(x, y)$ both at critical points and on the boundary of the domain.
- Find the critical points by solving the system $\left\{\begin{array}{l}f_{x}(x, y)=0 \\ f_{y}(x, y)=0\end{array}\right.$, the find f at those critical points which are in the domain.
- Consider the boundary D (if D is piecewise smooth, repeat this step for each piece of the boundary).
- Incorporated the boundary curve(s) into $f(x, y)$ to create a function of one variable, say $g(x)$. (or it could be a function of y)
- Find the domain interval for the input interval. $a \leq x \leq b$ (or $a \leq y \leq b$)
- Treat as a 5A closed interval method problem (3.1) and find the abs . max for that $\mathrm{f}(\mathrm{x})$ on $[\mathrm{a}, \mathrm{b}]$. Compare the values you get here to the value of f at critical numbers

14.8 Lagrange Multipliers- A method for Optimizing a Function subject to a constraint equation
 (Omit two constraint problem)

Example motivating the method of Lagrange Multipliers: Maximize the area of a rectangle inscribed in $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Desmos animation (link on 5C page) https://www.desmos.com/calculator/uphhr6aikh

Method of Lagrange Multipliers:

To optimize f subject to a constraint equation $g=k$,
$\left\{\begin{array}{l}\vec{\nabla} f(x, y)=\lambda \vec{\nabla} g(x, y) \\ g(x, y)=k\end{array} \quad\left\{\begin{array}{l}\vec{\nabla} f(x, y, z)=\lambda \vec{\nabla} g(x, y, z) \\ g(x, y, z)=k\end{array}\right.\right.$

Chapter 14 Multivariable Functions
Method of Lagrange Multipliers To find the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$ [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface $g(x, y, z)=k]$:
(a) Find all values of x, y, z, and λ such that

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)
$$

and

$$
g(x, y, z)=k
$$

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Redo First Example: Maximize $A(x, y)=4 x y$ subject to constraint equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Redo Example from last section:

Find the maximum volume of a rectangular box that can be inscribed in the ellipsoid $9 x^{2}+36 y^{2}+4 z^{2}=36$
As discussed previously, we wish to maximize $V(x, y, z)=8 x y \bar{z}^{\text {subject }}$ to the constraint $9 x^{2}+36 y^{2}+4 z^{2}=36 \quad x, y, z>0$
So our " $f(x, y, z)$ "is $V(x, y, z)=8 x y z$ and our

Chapter 14 Multivariable Functions
Lagrange Multiplier Illustration https://www.geogebra.org/m/RtISr7GW\#material/i7ZQsiGf

