
Chapter	14	Multivariable	Functions	
14.	1	Functions	of	Two	or	More	Variables	
	
Recall	functions	of	ONE	variable:	 	

� 

f :R→ R 	
	

					 	 	 					 	 	
	
Functions	of	Two	Variables:		

� 

f :R2→ R 	 	 	
	

	
	
Example:		

� 

f(x,y)= ln(x2− y)	
	 	
	 Compute	functional	values	
	
	 What	is	the	domain?	
	
	 What	would	a	graph	look	like?	(in	general,	we	will	look	at	more	specific	methods	later)	
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Other	orientations	for	functions	
z=f(x,y)	 	 	 	 	 	 	 y=f(x,z)	 	 	 	 x=f(y,z)	

				 	 			 	 	 	 	
	
	
Graphing	functions	of	two	variables:	
	
Sketch	the	graph	of	

� 

f(x,y)=
1
4x2 + y2	
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Note:		Level	curves	can	provide	very	useful	physical	information	about	the	function	even	if	the	goal	is	not	a	graph.	

	
Functions	of	3	variables	
Definition	similar,	but	domain	is	a	set	in	________________.	
	
Example:		

� 

w = f(x,y,z)= 100− x2− y2− z2 	
	
Find:		

� 

f(0,0,0)=____________________	

� 

f(1,2,0)=____________________	

� 

f(1,2,3)=____________________	 	
	
Domain:	
	
Graph:		How	would	be	“graph”		

� 

f(0,0,0)= 10	
	
Level	surfaces:	
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14.2	Limits	–	We	cover	this	lightly	
	
	 Recall	limit	for	f(x)		(1.7)	 	 	 	 Extends	in	a	logical	way	to	f(x,y)	
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How	do	we	compute	limits?		(see	graphs	Math	5C	page	“Limits”	https://www.geogebra.org/classic/ntcdb2mt)	
Most	of	the	functions	we	deal	with	are	continuous	on	their	domain,	so	to	evaluate	a	limit,	we	just	evaluate	the	function	
	
	

    

� 

lim
(x ,y )→(1,1)

x2

10
+ y 2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =_____________				 	 	

	
	
	
	
	
	
	
	
But	if	f	is	not	continuous	at	(a,b)	but	is	instead	indeterminate,	we	do	one	of	three	things.	
	
1)		Algebraic	manipulation			

	

� 

lim
(x,y)→(0,0)

x4 − y4

x2− y2
= 	 	 	 	 	 	

� 

lim
(x,y)→(0,0)

(x2 + y2)ln(x2 + y2)	 	 	
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2)	Prove	the	limit	does	not	exist	by	considering	different	paths.			(	Recall	

� 

lim
x→0

x
x

� 

)	
	
	 	
	
	

Example:	

� 

lim
(x,y)→(0,0)

x2− y2

x2 + y2 	
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2)	Consider	different	paths	(cont’d)	

	 Example:	

� 

lim
(x,y)→(0,0)

xy2

x2 + y4 	

	
	

	 	 	
	
	
	
	
	
	
	
	
What	is	the	moral	of	the	story	on	this	example?		_____________________________________________________________________________________	
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3)		Prove	using	the	delta	epsilon		definition	of	limit	or	squeeze	theorem.		(You	won’t	be	tested	on	these.)	

	 Example:	

� 

lim
(x,y)→(0,0)

2xy2

x2 + y2 	
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Intro	to	14.6	and	14.3:		Development	of	the	derivative	of	f(x,y)	 	
	
	 Derivative	of	f(x)	 	 	 	 	 	 Derivative	of	f(x,y)	
	

	 	 	 	 	 	
	
	
	 Move	a	distance	h	from	a	 	 	 Move	a	distance	h	from	a	given	point	(x0,		y0)		
	 given	point	x0.	 	 	 	 in	the	direction	of	unit	vector	  

� 

! u = < a,b > 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 New	point:		 	 	 	 	 New	point:	
	
	
	
	
	
	
	 Average	Rate	of	Change	at		 x0	 	 Average	Rate	of	Change	at	(x0,		y0)	in	the	direction	of	unit	vector	  

� 

! u = < a,b > 	
	
	

� 

Δoutput
Δinput =

rise
run = 	 	

� 

Δoutput
Δinput =

rise
run =

Δz
= 	

	
	 Instantaneous	Rate	of	Change	at	x0		 Inst.	Rate	of	Change	at	(x0,		y0)in	the	direction	of	unit	vector	  

� 

! u = < a,b > 	
	
	
	

� 

′ f (x0)= 	 	
	
	 The	general	derivative:	 	 	 The	general	derivative:	

	

� 

′ f (x)= lim
h→0

f (x + h)− f (x)
h 		 	 	

  

� 

D ! u f (x,y)= lim
h→0

f(x + ah,y+ bh)− f(x,y)
h 	
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Understanding	the	derivative	

  

� 

D ! u f (x,y)	
	

	 		
 https://www.geogebra.org/m/tZgrSxQ4#material/Trws2PBm 
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14.3	Partial	Derivatives	
	
For	now,	though	we	should	understand	the	meaning	of	the	derivative	

  

� 

D ! u f (x,y)	we	are	unable	to	compute	it.	
	
In	this	section,	we	consider	to	special	cases	of	the	derivative	that	we	WILL	be	able	to	compute.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	   

� 

! u =
! 
i = < 1,0> 	 	 	 	 	 	   

� 

! u =
! 
j = < 0,1> 	

	
	 	 Movement	in	the	_______________________	direction	 	 Movement	in	the	_______________________	direction	
	
	 	 y=_____________________	(constant)	 	 	 	 x=_____________________	(constant)	 	
	
	 	 ___________=

  

� 

D ! u f (x,y)=	 	 	 	 	 	 ___________=
  

� 

D ! u f (x,y)=	
	
	
	
Notation:	
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� 

∂ f
∂ x = fx 	 	 	 	 	 	 	 	 	

� 

∂ f
∂ y = fy 	

	

													 	 	 	 							 	
	
	
	
Another	illustration	of	partial	derivatives	on	the	5C	page:	https://www.geogebra.org/m/RtISr7GW#material/gsypFXHC	
	
	
Computing	Partial	Derivatives:	
	

To	compute	

� 

∂ f
∂ x ,	we	treat	_____________________	as	a	constant.			To	compute	

� 

∂ f
∂ y ,	we	treat	_____________________	as	a	constant	
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Example:	

� 

f(x,y)= x2lny	 Find	:		

� 

∂ f
∂ x 	 	 	 	 	 	

� 

fy 	 	 	

	 	 	 	

� 

∂ f
∂ x (4,2)

	 	 	 	 	

� 

fy(3,1)	
	
	
	
Differentiation	extends	to	R3,	with	the	additional	partial	derivative	corresponding	to	the	positive	z	direction,	  

� 

! u = < 0,0,1> 	
	
	
	
Example:	
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Approximating	partial	derivatives	when	discrete	data	or	contour	map	given,	no	f(x,y)	

m	
	



Chapter	14	Multivariable	Functions	
Implicit	Differentiation	
For	the	surface	

� 

x2 + y2 + z2 = 1,	find	

� 

∂ z
∂ y 	at	the	point	

� 

2
3,

1
3,

2
3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 	
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Higher	Order	Partial	Derivatives	
	
	
	

� 

f(x,y)= x3y4	
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14.5	–	Chain	Rules		
	
Notation:		If	f	is	a	function	of	ONE	variable	only,	we	use	d.		So	if	y=f(x),	we	say	

� 

dy
dx 	

If	f	is	a	function	of	MORE	than	one	variable,	we	use	

� 

∂ 		So	if	z=f(x,y),	we	say	

� 

∂ z
∂ x 	

	
Two	versions	of	Chain	Rule	
	
1)	f	is	a	function	of	more	than	one	variable	where	each	of	those	variables	is	a	function	of	one	variable	only,	so	f	is	ultimately	
dependant	on	ONE	variable.	
	

	 Example:		

� 

z= x2y; with			

� 

x = t2

y= t3
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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2)		f	is	a	function	of	more	than	one	variable	where	each	of	those	variables	is	also	a	function	of	more	than	one	variable	,	so	f	is	
ultimately	dependant	on	MORE	than	one	variable.	

Example:		 	

� 

w = xyz	 where		

� 

x = cost
y= sint
z= t

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Example:		Suppose		F=f(x,y,z,t)	where	x=x(u,v,w),	y=y(u,v,w),			z=z(u,v,w),		and	t=t(u,v,w),		
	
	 Find:			 	 	 	 	 	 	 	 	 	 	 (show	tree	diagram)	
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Using	the	chain	rule	to	generate	a	formula	as	an	alternate	to	implicit	differentiation.	
	

Recall	example	from	14.3	that	we	did	using	implicit	differentiation:	 	
	
Assuming	z	can	be	expressed	as	a	function	of	f(x,y)	then	we	should	be	able	to	find	

� 

∂ z
∂ y ,	but	rater	than	solve	for	z	(explicit)	or	

take	the	partial	with	respect	to	y	of	both	sides	(implicit)		we	will	introduce	a	new	function,		
	

� 

F(x,y,z)= x2 + y2 + z2	and	represent	the	given	surface	

� 

x2 + y2 + z2 = 1	as	a	particular	level	surface	of	F,	

� 

F(x,y,z)= 1		(this	is	a	
common	technique	as	we	go	on)	
	
Now	F	is	a	function	of	x,	y,	and	z………	where		z		is	a	function	of	x	and	y	
(That	is	F(x,y,z)	where	z=f(x,y))	which	means	that	in	the	words	used	earlier,	F	is	ultimately	a	function	of	x	and	y.	
	
Then	by	the	chain	rule:		

� 

∂ F
∂ x =

∂ F
∂ x

dx
dx+

∂ F
∂ y

dy
dx+

∂ F
∂ z

∂ z
∂ x 				 and		 	

� 

∂ F
∂ y =

∂ F
∂ x

dx
dy+

∂ F
∂ y

dy
dy+

∂ F
∂ z

∂ z
∂ y 	

	
	
	
Applying	this	to	a	surface,	represented	by	the	equation	

� 

F(x,y,z)= k 	we	get	
	
	
	
	
So		

� 

∂ z
∂ x = 	 	 	 	 	 and		

� 

∂ z
∂ y = 	

	
Thus	for	our	example:	
	
	
See	also	example	8	page	982	for	R2	version	
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14.6		The	Derivative			
	
From	our	earlier	introduction	to	derivative,	
we	defined		

  

� 

D ! u f (x,y)= lim
h→0

f(x + ah,y+ bh)− f(x,y)
h 	

but	we	could	not	yet	compute	it.		The	chain	rule	
will	enable	us	to	compute	it.	
	

� 

z= f(x,y)	and	we	found		

� 

x = x0 + ah
y= y0 + bh

⎧ 
⎨ 
⎩ 

	

	
So	z	is	ultimately	a	function	of	h	only.		Then	
	

� 

dz
dh = 	
	
	
	
	
	
Introducing	gradient	notation,	define	

  

� 

! 
∇ f (x,y)= fx(x,y), fy(x,y) 	then		

	

  

� 

D ! u f (x,y)= 	
	
	
Example:		Find	the	(directional)	derivative	of	

� 

f(x,y)= xy2 + ln x,	at	point	(1,2)	in	the	direction	of	
  

� 

! v = 3,4 	
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Significance	of	the	Gradient	
	

  

� 

D ! u f (x0,y0)=
! 
∇ f (x0,y0)•

! u =
! 
∇ f (x0,y0) ! u cosθ 	

	
	
	
	
	
	
	
	
	
	
	
	
	
Maximum	value	of	the	directional	derivative	at	(x0,y0)	occurs	in	the	direction	of_________	
and	the	value	of	the	derivative	in	that	direction	is	__________________________	
	
	
Minimum	value	of	the	directional	derivative	at	(x0,y0)	occurs	in	the	direction	of_________	
and	the	value	of	the	derivative	in	that	direction	is	__________________________	
	
Traveling	in	the	direction	which	is	orthogonal	to	the	gradient	__________________________	
	
	
Illustration	on	5C	page:	https://www.geogebra.org/m/tZgrSxQ4#material/vBNTj7Y2 
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Extends	to	R3	
	

For	

� 

f(x,y,z),		 	 	
  

� 

! 
∇ f (x,y,z)= fx(x,y,z), fy(x,y,z),fz(x,y,z) 	

	 	 	
  

� 

D ! u f (x0,y0,z0)=
! 
∇ f (x0,y0,z0)•

! u =
! 
∇ f (x0,y0,z0) ! u cosθ 	

As	before,	the	maximum	of	the	directional	derivative	at	(x0,y0,	z0)	occurs	in	the	direction	of	the	gradient	and	the	minimum	
occurs	in	the	direction	opposite	the	gradient.		Here,	the	gradient	is	orthogonal	to	the	level	surface	of	

� 

f(x,y,z).	
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14.6	cont’d	:		Tangent	Planes	
		
We	are	often	interested	in	finding	the	plane	tangent	to	a		
surface	at	a	given	point.	
	
As	we	learned	earlier,	any	surface	can	be	expressed	as	a	level	
surface	of	a	function	of	three	variables.		F(x,y,z)=k.		Given	the		
previous	discussion,	

  

� 

! 
∇ F(x0,y0,z0)	is	orthogonal	to	the	level	surface	

of	F.		That	will	be	our	normal	vector	to	the	plane.	
	
	
Example:		Find	the	equations	of	the	tangent	plane	and	the	normal	line	to	the	surface	

� 

x = y2 + z2 +1			at	the	point	(3,1,-1).	
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14.4	:		Tangent	Planes	and	Differentials	
	
Tangent	Planes	
In	14.6	we	learned	how	to	find	the	equation	for	a	plane	tangent	to	a	surface.		If	we	express	the	surface	as	a	level	surface	of	a	
function	of	3	variables,	F(x,y,z)=k,	then	the	normal	vector	for	the	tangent	plane	at	the	point	

� 

(x0,y0,z0)	is	  

� 

! n =
! 
∇ F(x0,y0,z0).	

	
	
	
	
	
	
	
	
	
	
	
In	section	14.4,	your	book	derives	another	formula	that	can	be	used	in	the	special	case	that	the	surface	can	be	expressed	as	a	
function,	z=f(x,y).	
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It	is	not	necessary	to	remember	this	formula	separately	since	our	method	from	14.6	is	more	general	and	works	in	more	
situations.		However,	we	will	use	this	formula	in	a	derivation	which	follows.	
Differentials	
	
Recall	from	5A:		If	y=f(x),	the	the	differential,	dy=________________________		What	is	this	giving	us.	

	
	
In	section2.9,	we	used	this	in	two	ways.	(1)	Use	dy	to	approximate	

� 

Δy,	and	(2)	Approximate	functional	values	

� 

f(x+ Δx)	
	
	
Similarly,	for	z=f(x,y)		we	would	want	dz	to	represent___________________________________	
	
	 	 	 	 	 	 	 	 	 	 Deriving	the	formula	for	the	differential	dz:	
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We	use	differentials	in	two	ways:	
	
(1)		Approximate			

� 

Δz				

	
	
The	need	to	approximate	

� 

Δz	comes	up	in	physical	applications	like	that	of	computing	error,	see	example	5	
	
(2)		Approximating	functional	values	

� 

f(a+ Δx,b+ Δy)	
	
	 Since	

� 

Δz= f(a+ Δx,b+ Δy)− f(a,b),		
	
	 	

� 

f(a+ Δx,b+ Δy)=__________________________________________________	
	
Example:		Use	differentials	to	approximate	

� 

9(1.95)2 + (8.1)2 	
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14.7	Extrema	of	f(x,y)	
	
5A	Review	problem:		Given	

� 

f(x)= 3x4 −16x3 +18x2,	find:	
	 Critical	Numbers:	(3.1)	
	
	
	 1)	Local	Extrema	(3.3)	
	

	

	
	
	 2)	Absolute	Extrema	
	
	
	
	
	
	
	
	
	 3)	Absolute	Extrema	on	[-1,4]	
(3.1)	
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5A	review	contd:	applied	problem	

	Maximize	the	area	of	a	rectangle	inscribed	in	

� 

x2
16+

y2
9 = 1	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Desmos	animation	(link	on	5C	page)	https://www.desmos.com/calculator/uphhr6aikh		
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Now	Consider	Extrema	for	z=f(x,y)	
	
	

	
	
Observations:	
	
	
	
Critical	Points:	
	
	
	
	
	
	
Example:		Find	the	critical	points	of	

� 

f(x,y)=
1

100x
3 + y3−12xy( ) 	
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14.7i		Local	Extrema	
After	computing	critical	points,	what	next?	
	 		 “First	Derivative	Test”?	
	 	 “Second	Derivative	Test”?	
	
How	do	we	even	compute	a	second	derivative?	
Example:		Compute	  

� 

D2! u f (4,4)	for	

� 

f(x,y)=
1

100x
3 + y3−12xy( ) 	in	the	direction	of	

  

� 

! u = 3
5,45 	

	

  

� 

! 
∇ f (x,y)=

1
100(3x

2−12y), 1
100(3y

2−12x) ,	so		

	

  

� 

D ! u f (x,y)=
! 
∇ f (x,y)•

! u = 3
500(3x2−12y)+

4
500(3y2−12x)=

� 

9
500x

2−
36
500y+

12
500y

2−
48
500x 	

	
Now	we	take	the	derivative	of	this	function	in	the	direction	of	

  

� 

! u = 3
5,45 	

	

  

� 

D ! u D ! u f (x,y)( ) = D ! u 
3

500(3x2−12y)+
4

500(3y2−12x)=⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 	

	
	
	

  

� 

D2! u f (x,y)=
1

2500(54x− 288+ 96y)	
	
  

� 

D2! u f (4,4)=	
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How	do	we	show	  

� 

D2! u f (4,4)>0	for	every	direction?	(See	proof	pg	1007)….	
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Test	For	Local	Extrema	

	
	
So	for	our	example,	

� 

f(x,y)=
1

100x
3 + y3−12xy( ) 	with	critical	points	(4,4)	and	(0,0)	

	

� 

fx =
1

100(3x
2−12y) fy =

1
100(3y

2−12x)	
	
	
	

� 

D =
fxx fyx
fxy fyy

= 	

	
	
	
	
At	(0,0)		D=	
	
	
	
At	(4,4)	D=	
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14.7ii	Absolute	Extrema	
	
	
Find	the	maximum	volume	of	a	rectangular	box	that	can	be	inscribed	in	the	ellipsoid

� 

9x2 + 36y2 + 4z2 = 36	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
How	do	we	know	this	critical	point	actually	yields	an	ABSOLUTE	MAX?		MUST	VALIDATE	THIS	IN	SOME	WAY.	
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14.7iii	Absolute	Extrema		for	f(x,y)	Continuous	on	Closed	Domain	
	
Example.		Find	the	absolute	extrema	of	

� 

f(x,y)= x2 + 2y2	on	the	closed	domain			(or	“subject	to	the	constraint”	)		

� 

x2 + y2 ≤1	
	

	
	
https://www.geogebra.org/m/RtISr7GW#material/i7ZQsiGf 
	
	
	
	
	
	
	
	
	
	
	
	
For	another	example,	see	5C	page	http://pccmathuyekawa.com/classes-taught/math_5c/file_cabinet/handouts/14.7_HW.jpg	
Or	video.	https://youtu.be/LnX-UZ30ULA		
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14.7	Summary	
	

14.7i:		Local	Extrema	

• Find	the	critical	points	by	solving	the	system	

� 

fx(x,y)= 0
fy(x,y)= 0

⎧ 
⎨ 
⎩ 

	

• For	each	critical	point	apply	the	second	derivative	test.		Compute	D=

� 

fxx fyx
fxy fyy

	

o If	D>0,	there	is	a	local	extremum,	to	determine	if	it	is	a	max	or	min	find	

� 

fxx	(or	

� 

fyy)	at	the	critical	point	
• If	

� 

fxx>0,	think	concave	up,	so	there	is	a	local	min.	
• If	

� 

fyy<0,	think	concave	down,	so	there	is	a	local	max	
o If	D<0,	there	is	not	a	local	extremum	at	that	point.		This	yields	a	saddle	point.	

14.7ii:		Absolute	Extrema	subject	to	a	constraint	equation	
• Incorporate	the	constraint	into	the	function	you	wish	to	optimize	to	create	a	function	of	two	variables	f(x,y).	
• Find	the	critical	points	by	solving	the	system	

� 

fx(x,y)= 0
fy(x,y)= 0

⎧ 
⎨ 
⎩ 

	

• Validate	whether	this	critical	point	actually	yields	an	absolute	extremum.		Often	we	do	this	using	physical	vadiation.	
• Make	sure	to	answer	the	question	asked.		Is	the	max	value	asked?		The	input?		Both?	

14.7iii:		Absolute	Extrema:		Special	case	f(x,y)	continuous	on	closed	domain.		
• Compare	values	of		f(x,y)	both	at	critical	points	and	on	the	boundary	of	the	domain.	
• Find	the	critical	points	by	solving	the	system	

� 

fx(x,y)= 0
fy(x,y)= 0

⎧ 
⎨ 
⎩ 

,	the	find	f	at	those	critical	points	which	are	in	the	domain.	

• Consider	the	boundary	D	(if	D	is	piecewise	smooth,	repeat	this	step	for	each	piece	of	the	boundary).	
o Incorporated	the	boundary	curve(s)	into	f(x,y)	to	create	a	function	of	one	variable,	say	g(x).	(or	it	could	be	a	

function	of	y)	
o Find	the	domain	interval	for	the	input	interval.	

� 

a ≤ x ≤ b		(or	

� 

a ≤ y≤ b)	
o Treat	as	a	5A	closed	interval	method	problem	(3.1)	and	find	the	abs	.	max	for	that	f(x)	on	[a,b].		Compare	the	

values	you	get	here	to	the	value	of	f	at	critical	numbers	
 

14.8	Lagrange	Multipliers-	A	method	for	Optimizing	a	Function	subject	to	a	constraint	equation		
	 (Omit	two	constraint	problem)	
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Example	motivating	the	method	of	Lagrange	Multipliers:		Maximize	the	area	of	a	rectangle	inscribed	in	

� 

x2
16+

y2
9 = 1	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Desmos	animation	(link	on	5C	page)	https://www.desmos.com/calculator/uphhr6aikh		
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Method	of	Lagrange	Multipliers:	
	
To	optimize	f	subject	to	a	constraint	equation	g=k,	
	
	
  

� 

! 
∇ f(x,y)= λ

! 
∇ g(x,y)

g(x,y)= k
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
																				

  

� 

! 
∇ f(x,y,z)= λ

! 
∇ g(x,y,z)

g(x,y,z)= k
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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Redo	First	Example:		Maximize		

� 

A(x,y)= 4xy	subject	to	constraint	equation	

� 

x2
16+

y2
9 = 1	
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Redo	Example	from	last	section:	

	
As	discussed	previously,	we	wish	to	maximize		

� 

V(x,y,z)= 8xyz	subject	to	the	constraint	

� 

9x2 + 36y2 + 4z2 = 36; x,y,z> 0	
So	our	

� 

"f(x,y,z)"is	

� 

V(x,y,z)= 8xyz	and	our	
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Lagrange	Multiplier	Illustration		https://www.geogebra.org/m/RtISr7GW#material/i7ZQsiGf 
	
	

	
	
	

	
	


